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In conventional low energy electron coolers, the electron
beam is immersed in a continuous solenoid, which provides
a calm and tightly focused beam in a cooling section. While
suitable for low energies, the continuity of the accompanying
magnetic field is hardly realizable at relativistic energies. A
possibility is considered to use an extended solenoid in the
gun and the cooling section only, applying lumped focusing
for the rest of the electron transport line.

I. INTRODUCTION

Although electron cooling [1,2] has been a routine
tool in many laboratories [3], its use has been restricted
to low energy accelerators with the kinetic energy <1
GeV/nucleon, i.e. <0.5 MeV of electrons. Currently,
there are two relativistic energy range electron cooling
projects being developed: at Fermilab, for 8.9 GeV/c
antiprotons in the Recycler ring [6] and at DESY, for a
15-20 GeV/c bunched proton beam in PETRA ring [7].
Traditional low energy electron cooling devices follow an
original design of the NAP-M [8] employing a continuous
longitudinal magnetic field in the kilogauss range for the
electron beam transport from the cathode through the
cooling region to the collector, see Fig. 1.

FIG. 1. Sketch of the NAP-M electron cooler EPOKHA.
Electrons follow the magnetic field lines (green arrow lines)
from the cathode to the collector.

The solenoidal field uniquely provides a focusing prop-
erty, crucial for electron cooling: it allows to con-
fine tightly the electron beam while keeping its angu-
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lar spread small. Although at higher energies the space
charge and collective interaction effects become less de-
structive, the mentioned property of the solenoidal field
makes it very beneficial. This was found to be true for
the developed medium-relativistic projects [4–7], but not
only there. According to Ref. [9,10], the solenoidal field
in the cooling section can be very advantageous at much
higher energies as well. That is why a necessity of the lon-
gitudinal magnetic field in the cooling section is assumed
in this paper. This does not mean that a possibility for
effective cooling without the solenoidal field is totally de-
nied; rather such possibility, if found, would lie beyond
the scope of this paper.

In principle, a continuous solenoid along the whole
electron beam line suggested in Ref. [5] would be a good
focusing option at any energy. Such a solution though is
hardly compatible with the beam acceleration up to rela-
tivistic energies and also with design advances (related to
cooling of bunched beams) such as electron bunch decom-
pression, incorporation of recirculator rings, etc. [7,10].
However, a different scale of electron energies under con-
siderations allows to modify this approach. Namely,
lumped focusing can be used for the beam transport line
with an idea to avoid any coherent motion of the beam
inside the cooling solenoid [6,7,10].

A beam state required by the electron cooling is char-
acterized by a high ratio between the beam size and
the Larmor radius; this state is referred to as calm or
magnetized. The transport line can include any sepa-
rated optical elements such as solenoid lenses, dipoles
and quadrupoles. It is shown in this paper that a calm
beam in the cooler requires certain matching between a
magnetized electron gun and the cooler solenoid. A lin-
ear theory of matched 4-dimensional optical transitions
is presented which allows to formulate properties of the
transport line. The beam transformations are described
in terms of the drift and the cyclotron degrees of free-
dom; a necessity to have them uncoupled is shown. For
a beam born at a round cathode, it is proved that the
cathode has to be properly magnetized. A possibility
to transform a ribbon electron beam in a storage ring
into a calm beam in the cooler is discussed. An example
of a conceptual design of relativistic electron cooling is
shown assuming an electrostatic accelerator as a source
of the electrons. In this device, only the gun, cooling
section and the collector are immersed in solenoids while
the rest of the beam line has a lumped focusing.
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II. ANGULAR MOMENTUM-DOMINATED
BEAM

On entering or exiting the solenoid, the beam acquires
a kick that changes its rotational state. Inside the cool-
ing solenoid, the beam is required to be calm, i.e. not to
have any angles in excess of the thermal ones (assumed
to be negligible in this section). The above point is very
important: the cooling rates are inversely proportional
to a relative electron-ion velocity cubed; thus, any coher-
ent angle above the thermal level dramatically depresses
the cooling process. The question under consideration
is whether and how this requirement can be compatible
with the lumped focusing scheme.

A. Solenoids and Acceleration Intervals

First, let the beam line to consist of aligned solenoids
and acceleration intervals only. For these straight and
axially symmetric lattices, Busch’s theorem states that
the canonical angular momentum

M = xpy − ypx = pr2θ′ − eΦ(r, z)/(2πc) (1)

is conserved along any of the electron trajectories (see
e.g. [11,12]). Here x, y, px, py are the transverse Cartesian
coordinates and their canonically conjugated momenta,
r, θ, z are the cylindrical coordinates, the prime ′ denotes
a derivative along the axis z, p = γβmc is the total mo-
mentum, Φ(r, z) = 2π

∫ r
0
B(r̃)r̃dr̃ is the magnetic flux

inside a circle enclosed by the electron offset r, and −e is
the electron charge. The canonical angular momentum
(CAM) of any electron is thus determined by its initial
value, i.e. by its value at the cathode. Thus, the conser-
vation of the CAM allows to express an electron angular
velocity at a given point of its trajectory in terms of the
magnetic fluxes enclosed by this electron at this point
and at the cathode. In the paraxial approximation, the
magnetic field can be considered uniform over the beam
cross section, which gives

θ′ = e(Br2 −Bor2
o)/(2pcr2), (2)

with Bo and ro as the magnetic field and electron offset
at the cathode.

The single particle radial offset is described by the
paraxial ray equation [12]:

r′′ +
γ′r′

β2γ
+
(
eB

2pc

)2

r −
(
eBo
2pc

)2
r4
o

r3
= K

r

a2
− γ′′r

2β2γ

(3)

where a is the beam radius, K = 2I/(I0β3γ3) is the gen-
eralized perveance with I standing for the current and
I0 = mc3/e = 17kA. The right hand side takes into ac-
count both the space charge and the external transverse
electric field. The beam envelope a = a(z) is found from

Eq. (3) by the substitution r = a, ro = ao with the initial
conditions a(0) = ao, a

′(0) = 0. All the trajectories with
r′(0) = 0 scale as r(z) = roa(z)/ao.

Without the transverse electric fields, the equations (2,
3) have an r′ = 0 solution inside an extended solenoid of
the cooler. This solution is realized if after the entrance
in the cooler

a′ = 0 , Ba2 = Boa
2
o. (4)

At the exit of the gun solenoid, the beam acquires an
azimuth velocity. During the transport, this velocity
changes, partly transforming into the radial velocity.
However, if the beam state at the entrance of the cooler is
matched with its state at the cathode so that the condi-
tions (4) are satisfied, the beam transverse velocities are
finally canceled. Schematically, the beam transport with
the matched entrance in the cooling solenoid is depicted
in Fig. 2.
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FIG. 2. Beam transport with matched entrance in the
cooler. The beam envelope is depicted at the top. Trans-
formation of electron coordinates ~ρ = (x, y) and velocities
~ρ′ = (x′, y′) are shown at the bottom.

In the cooler, the space charge limits the minimal at-
tainable angle,

√
a2θ′2 + a′2, which cannot be zero. As

it follows from (2, 3) the angle is minimized when the
cyclotron motion is not excited, a′ = 0, and the angle is
given by an azimuthal drift:

aθ′ = 2I/(γ2β2Bac) . (5)

The drift angles can be neglected if they do not exceed
the thermal angles of the cooled ions; this puts the lower
boundary on the magnetic field in the cooling section.

With the drift neglected, the electrons do not have any
transverse velocity inside the cooling solenoid provided
that the matching conditions (4) are satisfied.

If the solenoid radius is much smaller than a period
of the Larmor helix, the solenoid entrance can be con-
sidered as a thin boundary. In this case, the matching
requirements (4) become explicit boundary conditions at
the solenoid entrance. Note that in the linear approxima-
tion, the matching is satisfied for every trajectory once
it is satisfied for one of them.
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In the radial equation (3), the last term on the left
hand side is determined by the inherited CAM M =
eBor

2
o/2c. Radial dependence of this term allows to treat

the CAM as effective (unnormalized) emittance

εeff = M/p = Φ/(2πBρ) (6)

with Bρ = pc/e. Then, this analogy leads to a concept
of an effective beta-function

βeff = a2/εeff =
2πγβea2

reΦ
. (7)

The effective beta-function determines a required lens-
to-lens distance in the beam transport channel. For a
conventional low-energy cooler, assuming the electron ki-
netic energy Ee = 25 keV, the magnetic flux Φ = 1π kG
cm2, and the beam radius a = 1 cm, the effective beta-
function is very small, βeff = 1 cm. It means that the
accompanying magnetic field cannot be actually inter-
rupted in this region of parameters. However, the situa-
tion changes for relativistic coolers where the accelerated
beam is more rigid, and the magnetic flux can be signif-
icantly reduced.

For the Fermilab project, for instance, with the elec-
tron kinetic energy in the cooler Ee ∼= 4.3 MeV, the space
charge limitation (5) allows for a rather small value for
the magnetic flux: Φ = 30π G cm2 [6]. For the beam
radius of a = 0.6 cm, the accompanying magnetic field
can be interrupted at early stages of the acceleration: for
γβ = 2 Eq. (7) already gives βeff = 20 cm.

When extracted from the magnetic field, the diver-
gence of this cold and low space charge beam is deter-
mined by the inherited canonical angular momentum.
Beams of such a kind can be referred to as an angular
momentum dominated, as distinguished from emittance
and space charge dominated beams.

The transport of the angular momentum dominated
beam is not completely identical to that of the emittance
dominated beams, as it could be concluded from the en-
velope equation (3). The principal difference is that the
CAM-related angles are not random; once acquired, they
can be effectively nulled out by a proper beam matching
in the downstream solenoid, as it is sketched in Fig. 2.
Due to the momentum spread of electrons though, this
extraction gets to be imperfect: electrons with differ-
ent momenta have different phase advances. Note that
the mismatch caused by the momentum spread increases
with the magnetic field due to a growth of the phase ad-
vances and their spread; thus, from this point of view,
a lower magnetic field is more beneficial. In this paper
that issue is not discussed in more details; the electron
momentum spread is supposed to be insignificant, which
requires the phase-mismatch electron angles in the cooler
to be smaller than the angles of the cooled ions.

B. Bends

Above, a straight transport line was considered. In
practice though, bending parts are normally inevitable.
Thus, the next question is whether the bends could be
compatible with this lumped focusing. Inside a dipole,
the linear electron motion is conventionally described by
the following set of equations:

x′′ +
1− n
ρ2
d

x = 0, y′′ +
n

ρ2
d

y, n = − ρd
Bd

∂Bd
∂x

, (8)

where x and y are the horizontal and vertical displace-
ments from the ideal orbit, ρd is a radius of curvature in
the dipole magnetic field Bd along the y axis, and the pa-
rameter n is conventionally referred to as the field index.
Generally, these equations do not preserve the rotational
symmetry of the beam in the transverse x − y plane.
However, for a specific case n = 1/2 the equations are
invariant under x−y rotations, and the angular momen-
tum M = pr2θ′ = p(xy′ − x′y) is an integral of motion.
Thus, for this specific field index, the bending parts are
compatible with the lumped focusing scheme: the angu-
lar momentum conservation guarantees the same suffi-
cient conditions for the calm beam in the cooler as for
the straight transport line (4). For this invariant bend-
ing, the electron trajectory can be described in the polar
coordinates:

r′′ +
r

2ρ2
d

−
(
M

p

)2 1
r3

= 0. (9)

Thus, the transport line consisting of solenoids, drifts
and the index 1/2 bending magnets would provide the
calm beam inside the cooler if the matching conditions
(4) were satisfied. From the optical point of view, all
these elements are rotationally invariant; below, they are
referred to as the invariant elements. Transport lines
entirely based on the invariant elements can be called
locally invariant; they are considered in the next section.
The locally invariant lines have to be distinguished from
another kind of a transport, which restores the rotation
symmetry at the exit, but does not preserve it for the
intermediate points of the trajectory. As a whole, such
kind of a transport is described by an invariant mapping,
without being locally invariant. Such transport can be
referred to as globally invariant. It also can be called as
block invariant if it relates to a part of the transport line.

In the succeeding section, the locally invariant trans-
port is described in terms of 2 × 2 linear mapping. For
these lines, the Courant-Snyder parameters are found
and the matching conditions are reconsidered on a base
of this approach.

III. LOCALLY-INVARIANT MAPPING

A linear mapping can be built in terms of the Cartesian
coordinates, x and y. In the presence of solenoids, it is
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convenient to introduce also a rotating Larmor frame,
x̂-ŷ, as

u ≡ x̂+ iŷ = (x+ iy)e−iχ

χ′ =
1
2
eB

pc
≡ Ω/γβc . (10)

Due to the symmetry, the equations of motion reduce to
a single equation for the complex offset u (see e. g. [12]).
This equation takes a most compact form when the beam
frame time τ, dτ = (m/p)dz is used as an independent
variable instead of the longitudinal coordinate z:

ü+ Ω̂2u = 0 , Ω̂2 = Ω2 +
1
2

(
eBd
mc

)2

− p2K

m2a2
+
γγ′′

2c2
.

(11)

which is the Mathieu-Hill equation describing the uncou-
pled betatron oscillations.

The solution of (11) can be presented in the conven-
tional form:

u(τ) = C+

√
βeiφ +C−

√
βe−iφ ≡ u+ + u− , φ̇ = 1/β

(12)

where C+, C− are two arbitrary complex constants, and
the betatron function β satisfies the following equation:

2ββ̈ − β̇2
+ 4Ω̂2β2 − 4 = 0 . (13)

The solution of the equation of motion (11) can be writ-
ten in a form that presents the constants |C±|2 as the
Courant-Snyder invariants:

|C±|2 =
1

4β

∣∣∣u(1± iβ̇/2)∓ iβu̇
∣∣∣2 , (14)

which can be also expressed as

|C±|2 =
1

4β
[ (1 ∓ βΩ)2r2 + β̇

2
r2/4 + β2(ṙ2 + r2θ̇2)

±2β(1∓ βΩ)r2θ̇ − ββ̇rṙ] .

(15)

From here, it follows that the two squared amplitudes
|C±|2 are related to each other by means of the CAM:

|C+|2 − |C−|2 = M/m (16)

To be complete, the presentation (12, 13) requires the
initial conditions for the beta-function, β(0), β̇(0). Gen-
erally speaking, these initial conditions can be arbitrary
chosen for transport lines. However, in the case under
study the starting point τ = 0 corresponds to a surface
of the magnetized cathode, and this determines a natural
choice for the initial beta-function. There are no trans-
verse fields at the cathode, Ω̂o = Ωo, and a trajectory

with zero initial transverse velocities, ṙ = 0, rθ̇ = 0, does
not have initial cyclotron amplitude. It is convenient to
identify this particular trajectory with a pure ’minus’ so-
lution, with C+ = 0 for it, which is realized by a choice
of

β(0) = 1/Ωo , β̇(0) = 0 . (17)

With this choice, the amplitude C− is determined by an
initial offset, while C+ is a function of the initial trans-
verse velocity. So the ’minus’ solution relates to the posi-
tion of the Larmor center inside the gun solenoid, and the
’plus’ solution describes the cyclotron excitation there.
At the cathode, they satisfy the boundary conditions:

u̇±|o = ±iΩou±|o . (18)

As it is shown in the section IV, these ’plus’ and ’mi-
nus’ solutions can be treated as two canonical degrees of
freedom, referred to as a drift and a cyclotron motion.

The drift and the cyclotron solutions can be also con-
sidered inside the cooling solenoid, where Ω̂ = Ω̂f =
const. These particular solutions satisfy conditions sim-
ilar to (18):

u̇±|f = ±iΩ̂fu±|o . (19)

A. Matched Mapping

Solutions of the Mathieu-Hill equation (11) can be also
presented in terms of a transformation with a real 2 × 2
matrix, A(τ):(

u
u̇

)
τ

= A(τ)
(
u
u̇

)
o

, |A(τ)| = 1. (20)

When an initially calm beam is finally transformed into
a calm state again, it means that the cyclotron mode is
not excited both initially and finally or

u̇o = −iΩouo , u̇f = −iΩ̂fuf . (21)

This matching imposes the following conditions on the
transformation matrix A (20):

A22

A11
=

Ω̂f
Ωo

;
A21

A12
= −Ω̂fΩ . (22)

From here, the matrix A can be parameterized as

A =

 √
Ωo
Ω̂f

cosψ 1√
Ω̂fΩo

sinψ

−
√

Ω̂fΩo sinψ Ω̂f
Ωo

cosψ

 (23)

with a necessary condition Ω̂fΩo > 0. The single free
parameter, a phase ψ, is determined by all the involved
optic elements, with ψ̇ = Ω̂f inside the cooling solenoid.
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The presentation (23) can be also obtained in a dif-
ferent manner. The matrix of transformation for the
Mathieu-Hill equation has a conventional expression in
terms of the initial and final values of the betatron func-
tion and its derivative (see e. g. [13]). The initial val-
ues of the beta-function and its derivative are considered
above: β

o
= 1/Ωo, β̇o = 0. If the cyclotron mode is not

excited in the cooler, similar conditions are fulfilled there:
β
f

= 1/Ω̂f , β̇f = 0. With these initial and final values
of the betatron function, the above presentation of the
matrix A (23) follows.

It results from (21, 23), that if the cyclotron mode is
not finally excited, then the initial and final beam sizes
are matched:

(Ω̂r2)f = (Ωr2)o . (24)

A difference between this form of the matching condition
and the “magnetic flux law” (4) reflects a beam drift
rotation under the space charge effect. It is shown below
that the corrected matching condition (24) expresses a
restoration of the action related to the drift degree of
freedom.

The equation of motion (11) corresponds to the Hamil-
tonian

H(x̂, p̂x, ŷ, p̂y) =
Ω̂2x̂2

2
+
p̂2
x

2
+

Ω̂2ŷ2

2
+
p̂2
y

2
(25)

with p̂x, p̂y being canonical momenta conjugated to the
variables x̂, ŷ. For that part of the trajectory where Ω̂ =
const,

Ĵx =
Ω̂x̂2

2
+
p̂2
x

2Ω̂
, Ĵy =

Ω̂ŷ2

2
+
p̂2
y

2Ω̂
(26)

are the corresponding action variables. For the pure drift
motion, both actions are equal:

Ĵx = Ĵy = Ω̂r2/2 . (27)

It can be also seen that the actions are preserved un-
der the transformation A. Generally, the actions do not
vary when the system parameters change adiabatically.
Although the beam transport is not supposed to be adia-
batic, the actions are still preserved here. This property
of mapping A can be interpreted in a general way. The
conditions (21) express a requirement for the mapping
not to mix the two modes of the motion. Keeping the
modes uncoupled is also a general property of the adia-
batic motion. That is why it is not a surprise that for
both cases the action preservation is guaranteed.

As a curious fact, it can be noted that the equation of
motion (11) can be associated with a complex Hamilto-
nian

H(u, pu) =
Ω̂2u2

2
+
p2
u

2
. (28)

Then, the complex action

Ĵu =
Ω̂u2

2
+
p2
u

2Ω̂
. (29)

is also conserved: initially and finally Ju = 0.

B. Temperature Transformation for a Matched
Transport

Above, the transformation matrix A (23) was found
from the condition of the drift-to-drift transition (21).
Since the matrix is invariant with respect to a common
sign change of Ωo and Ω̂f , it allows to conclude that
matching of the drift component leads automatically to
identical matching of the cyclotron component:

(Ω̂|u±|2)f = (Ω|u±|2)o . (30)

For the drift mode (+), it gives the conditions (24), while
for the cyclotron mode (−) it can be rewritten in terms
of the transverse temperature T⊥:(

T⊥

Ω̂

)
f

=
(
T⊥
Ω

)
o

. (31)

It is shown below that the relationships (30) may be in-
terpreted as a preservation of both drift and cyclotron
actions when these modes do not transfer to each other.

IV. MATCHING WITH NON-INVARIANT
OPTIC ELEMENTS

The analysis above was related to the locally invari-
ant transportation, i. e. based on such optically invari-
ant elements as the solenoids and dipoles with the index
1/2. However, with increasing the electron energy, the
quadrupoles can be more suitable than the solenoid lenses
for the beam transport. Also, the conventional uniform-
field dipoles may look more preferable than the 1/2 in-
dex ones from a technical point of view. Consequently, a
question appears whether such optical elements as con-
ventional dipoles or quadrupoles are compatible with the
requirement to have a calm beam in the cooling section?

A. Uncoupled Transformation

In this section, a general form of the transformation
matrix is found. An optical transition between the mag-
netized cathode and the cooler can be treated in terms of
the canonically conjugated pairs. Let ~ρ = (x, y) be the
transverse Cartesian coordinate, and ~p⊥ = (px, py) =
~k⊥ − e

c
~A⊥ be the canonically conjugated momentum.

Here ~k⊥ = γm~υ⊥ is the kinematic momentum and
~A⊥ = 1

2
~B × ~ρ is the vector potential in the solenoid.

The transformation of a particle state
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x =

 x
px
y
py

 (32)

is expressed as xf = T xo with a symplectic 4 × 4 ma-
trix T . The mapping symplecticity can be expressed as
invariance of the Poisson brackets

{f, g} ≡
∑
i=x,y

(
∂f

∂pi

∂g

∂ρi
− ∂g

∂pi

∂f

∂ρi

)
under this transformation for any two functions f =
f(~p, ~ρ), g = g(~p, ~ρ) (see e. g. [14,15]). In particular,
there are only two non-zero Poisson brackets between
the components of the state vector xf as functions of
the components of the initial state xo:

{px, x} = {py, y} = 1, (33)

while the rest four brackets are equal to zero.
For a given point x in the 4D phase space, the trans-

verse kinematic momentum ~k and the position ~d of the
Larmor center are expressed as

~k⊥ = ~p⊥ + e
2c
~B × ~ρ

~d = ~ρ− ~ρL = 1
2
~ρ− c

e
~p×~B
B2

(34)

where the vector ~ρL = c~k × ~B/(eB2) describes the po-
sition on the Larmor circle relatively to its center. The
relationships (34) can be considered as a transformation
from the canonical pair ~ρ and ~p, to the new variables ~d
and ~k. The non-trivial feature of this transformation is
that the Poisson’s brackets between ~k and ~d are equal to
zero, while

{kx, ky} = −eB
c
, {dx, dy} =

c

eB
. (35)

Therefore, the normalized variables(
κ1

κ2

)
=
√

c

eB

(
ky
kx

)
and

(
ξ1
ξ2

)
=

√
eB

c

(
dx
dy

)
(36)

compose new canonical pairs. The action and phase vari-
ables related to these pairs can be introduced as well:(
ξ1
ξ2

)
=
√

2JD

(
cosψD
sinψD

) (
κ1

κ2

)
=
√

2JC

(
cosψC
sinψC

)
,

(37)

with

JD = (ξ2
1 + ξ2

2)/2 ≡ ξ2/2 =
eB

2c
d2

JC = (κ2
1 + κ2

2)/2 ≡ κ2/2 =
c

2eB
k2 .

(38)

(A canonical transformation similar to (34- 38) is men-
tioned in Ref. [14], p. 432.) In terms of these new vari-
ables, the CAM is expressed in a very compact way:

M =
eB

2c
(d2 − ρ2

L) =
ξ2 − κ2

2
= JD − JC . (39)

This canonical transformation can be presented as

x̂ ≡

 κ1

κ2

ξ1
ξ2

 = B

 x
px
y
py

 ≡ Bx, (40)

with a symplectic 4×4 matrix B, which can be composed
using (34) and (36). Finally, the transformation between
the two solenoids can be rewritten as

x̂f = T̂ x̂i , (41)

with a new symplectic matrix

T̂ = BfT B−1
o , (42)

where the matrices Bo and Bf belong to the initial (elec-
tron gun) and final (cooling section) solenoids, respec-
tively.

The 4× 4 matrix T̂ can be presented in a block form
as

T̂ ≡
(

(CC) (CD)
(DC) (DD)

)
(43)

In the initial state (at the cathode), the beam diameter
largely exceeds a characteristic Larmor radii of particles.
It can be expressed as a high initial excitation of the drift
degree of freedom in comparison with the cyclotron one.
To minimize the cyclotron motion in the cooling solenoid,
any influence from the drift degree of freedom has to be
avoided. In other words, the beam transport should be
designed in a way that 2× 2 block (CD) vanishes. So the
Poisson bracket {κ1, κ2} = 1 is determined by the matrix
(CC) only; therefore,(

κ1

κ2

)
f

= (CC)
(
κ1

κ2

)
o

, |(CC)| = 1. (44)

Since |T̂ | = 1, then |(DD)| = 1. Finally, it can be shown
that the block (DC) vanishes too; it follows from the fact
that all the Poisson brackets {κi, ξj} = 0. As a result,
the transformation of the drift component reduces to(

ξ1
ξ2

)
f

= (DD)
(
ξ1
ξ2

)
o

, |(DD)| = 1.

The obtained block-diagonal form of the transforma-
tion

T̂ =
(

(CC) 0
0 (DD)

)
(45)
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shows that the mutual uncoupling of the drift and cy-
clotron degrees of freedom is necessary and sufficient for
having a calm beam in the cooling section. Under this un-
coupled transformation, both the drift and the cyclotron
rms emittances

εD =
√
〈ξ2

1〉〈ξ2
2〉 − 〈ξ1ξ2〉2

εC =
√
〈κ2

1〉〈κ2
2〉 − 〈κ1κ2〉2

(46)

are preserved; the brackets 〈...〉 stand for the ensemble
averaging.

If the matched mapping is (globally) rotation invariant,
then the matrices (CC) and (DD) are invariant too. The
group of rotationally invariant 2 × 2 transformations is
the group of rotations itself, so

(CC) =
(

cosψC sinψC
− sinψC cosψC

)

(DD) =
(

cosψD sinψD
− sinψD cosψD

) (47)

with the two phases ψC , ψD as free parameters. In this
case, the actions ξ2/2 = JD and κ2/2 = JC are not
changed. This again leads to the relations (24, 31) found
above for the locally invariant transport. Here, these
relations reveal themselves as conditions of the actions
preservation; also they express the restoration of the
emittances (46). Indeed, in this case the cross-averages
in (46) vanish which results in

εD = 〈JD〉 = eB/c〈d2/2〉 , εC = 〈JC〉 = c/(eB)〈k2/2〉 .
(48)

Due to the decoupling of the drift and cyclotron degrees
of freedom, the 4D emittance follows as

ε = εDεC = d2k2/4 . (49)

The last result can be found in a different way. Gen-
erally, the 4D emittance is calculated by means of the
4× 4 correlation matrix Σik = 〈xixk〉, as ε =

√
|Σ|. For

arbitrary axially symmetric beams, this results in [16]

ε = (〈r2〉〈k2〉 − 〈rkr〉2 − 〈rkθ〉2)/4 . (50)

with kr and kθ being the radial and the axial components
of the kinematic momentum. For the matched beam, this
expression can be presented in terms of the drift and cy-
clotron variables (34). When vanishing correlations be-
tween the drift and the cyclotron degrees of freedom are
taken into account, 〈dikj〉 = 0, the previous result (49)
follows.

Normally, the hadron beams have equal transverse
emittances. Then, the axial symmetry of the transverse
momentum distribution of the hadron beam in the cooler
is beneficial for the cooling process. Thus, the optimal
cross-section of the hadron beam is also axially symmet-
ric there. That is why a round shape of the electron

beam in the cooling section is also optimal. Taking into
account that a round shape of the cathode is also prefer-
able, it leads to a conclusion that in the optimum, the
drift matrix (DD) is rotationally invariant (45). If the
cyclotron motion (temperature) can be neglected in the
initial state, no requirements are imposed on the matrix
(CC); otherwise, the symmetric (CC) as in (45) is the
optimal for the cooling process.

B. Invariant Matrices

According to the above description, the decoupled in-
variant beam transformations preserve the CAM. Thus,
it would be convenient for the electron transport line
to consist of the invariant blocks, i. e. groups of the
optic elements described by the CAM-preserving matri-
ces. A group of such linear mappings was considered by
E. Pozdeev and E. Perevedentsev ( [17,18], discussed in
[19]). It was proved that all CAM-preserving matrices
are described by the following 2× 2 block-diagonal form:

T = U(ψ)
(

T 0
0 T

)
. (51)

Here U(ψ) is a 4D rotation matrix providing separated
rotations in the coordinate and momentum sub-spaces by
the same angle ψ, and T is an arbitrary 2×2 matrix with
|T| = 1 required by the phase volume preservation. Note
that the group (51) can also be described as a group of
rotation invariant transformations because of UTT U = T
where the superscript T stands for transposing. This
condition is equivalent to a commutation of the matrices
T and U due to the rotation unitarity, U−1 = UT . It
follows that the mapping (51) transform any round beam
distribution into round again. Note that matrices

T = U(ψ)
(

T 0
0 −T

)
(52)

also transform any round beam into round again, but
they change the sign of the CAM. It can be shown that
any matrix preserving the beam axial symmetry can be
described either by Eq. (51) or Eq. (52).

Without coupling of the transverse degrees of freedom
(ψ = 0), the invariance requires for x and y matrices to
be identical, which constitutes 3 independent conditions.
Thus, two variable quadruples with one variable drift (or
three variable quadruples) are sufficient to transmute any
initial mapping into invariant one.

V. NON-INVARIANT TRANSFORMATIONS

A transport scheme above requires the cathode im-
mersed in a proper solenoidal field. A question arises
whether the magnetic field at the cathode is really in-
evitable? If one assumes the (global) rotation invariance
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for the transport mapping, the answer is clearly positive:
this immediately follows from the CAM conservation for
these transformations. But is it still possible to eliminate
this field for some non-invariant transport?

Note that a non-invariant mapping can transform a
particular calm and round beam into calm and round
state again. An example of such a kind was actually
shown in the previous section. It was pointed there
that the cyclotron motion is not excited by the decou-
pled transformations. If this motion were not excited
initially, an invariant drift transformation (DD) is suf-
ficient to have final beam round when the initial beam
was round too. Invariance of the cyclotron matrix (CC)
is not required here, this matrix can be arbitrary. In this
case, the total transformation T is not invariant, but it
still provides a round-to-round beam transformation for
a particularly initial state.

A. Generalized Busch’s Theorem

Thus, the problem can be rephrased in a following
manner: assuming the beam to be round at the cathode,
does it have to be properly magnetized (4) to get the
beam quiet and round inside the downstream solenoid?
Remember that the mapping invariance is not employed
in this section.

A positive answer to this question follows from the
generalized Busch’s theorem [20]. The theorem states
that for a hydrodynamic, or laminar, beam transported
by means of arbitrary static electric and magnetic fields,
the contour integral∮

Γ

~p~dl =
∮

Γ

~k~dl− eΦ/c (53)

is conserved. Here the contour Γ bounds an arbitrary
tube of trajectories in the 3D coordinate space x, y, z. If
the initial and final beam states are rotationally invari-
ant, the contour Γ is a circumference in the transverse
plane, and the CAM preservation follows. Note that the
field linearity is not required here.

Below, this theorem is extended from the electro- and
magneto-static fields to arbitrary Hamiltonian systems.
This extension, however, requires to assume the linearity
of the transformation. Thus, the statement to be proved
claims following: if a particular round beam is trans-
formed by a symplectic linear mapping into a round state
again, the CAM of every particle is restored. Note that
the beam is not supposed to be laminar here.

A property of the symplectic transformations to con-
serve skew-scalar products is used here (see e. g.
[15]). The skew-scalar product of two vectors in the
4D transverse phase space x1 = (x1, px1, y1, py1) and
x2 = (x2, px2, y2, py2) is an antisymmetric bilinear form
[x1,x2]. Expressed in terms of the usual scalar prod-
uct, it can be written as [x1,x2] = (x1,Sx2) with S as a

rotation by 90o in each of the phase planes, or

[x1,x2] = −x1px2 − y1py2 + x2px1 + y2py1.

Let x1i and x2i be two arbitrary vectors of the initial
state finally transformed into x1f and x2f . It can be
seen that the angles between their 2D x− y components
are conserved by the transformation. This property is
an obvious consequence of the rotation invariance of the
both states: without it, there would be an angular asym-
metry of the final beam density distribution. However,
the sign of this angle can be changed that would not con-
tradict the angular symmetry of the final beam distribu-
tion. The two vectors can be taken as 2D-orthogonal:
x1i = (ri, pir, 0, pit) and x2i = (0,−pit, ri, pir) having
the angular momentum Mi = ripit where ri is the initial
beam radius. Because of the angle conservation, these
two vectors are 2D-orthogonal again after the transfor-
mation. Without a lack of generality, the x-axis can be
assumed to go along the vector ~x1 both for the initial
and the final states; this follows from symplecticity of
the rotations. So the final states can be presented as
x1f = (rf , pfr, 0, pft) and x2f = ±(0,−pft, rf , pfr) with
Mf = ±rfpf as the final angular momentum. Conserva-
tion of the skew-scalar product

[x1i,x2i] = [x1f ,x2f ]

immediately results in Mi = ±Mf as was to be shown.
Actually, the statement just proved means that the

property of the canonical momentum conservation goes
beyond the mapping (or Hamiltonian) invariance. For
the invariant mappings, any initially symmetric state
of beam transforms into a symmetric state again. But
the mapping invariance does not follow from the fact
that one particular symmetric state was eventually trans-
formed into other, also symmetric, state. It was proved
in fact that the mapping invariance is a somewhat sur-
plus requirement for the momentum conservation; the
rotational invariance restoration for a particular initial
ensemble is sufficient to claim that every particle of this
ensemble restores its CAM as well. However, the sign of
the final CAM can be opposite to the initial.

Turning back to the specific question at the begin-
ning of this section, it can be concluded that there is no
mapping, invariant or not, transforming a round but not
properly magnetized (4) beam at the cathode into a calm
round beam in the cooler. No transformation can change
an absolute value of the canonical angular momentum of
a particle without breaking the rotational symmetry of
their ensemble.

B. Canonical Emittances and Beam Adapters

So the generalized Busch’s theorem asserts that a
round electron beam at the cathode has to be properly
magnetized. However, it says nothing about non-round
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beams at the cathode. In particular, what type of non-
round non-magnetized beams can be transformed into a
calm state in the cooling solenoid? By the definition, the
drift emittance of a calm, or a magnetized, state is much
higher than the cyclotron emittance. It seems rather ob-
vious that the same ratio between two independent emit-
tances is inherent to any initial beam state. Thus, to
become magnetized in the cooler, the beam has to be de-
scribed initially by the two emittances of very different
values. Obviously, a similar statement is related to a re-
verse transition. In particular, it can be expected that a
flat beam εx >> εy can be injected into a solenoid with a
proper optical adaptation, to become a magnetized beam
with solenoidal emittances εC and εD [21,22,10] having

εC
εD

=
ρ̄2
L

a2
=
εy
εx
. (54)

Such schemes can be used in order to optimize the fea-
tures of electron storage rings and recirculators as coolers
for high-GeV hadron beams [9,23–25] and for other appli-
cations [26]. The transformation from the ribbon state in
a free space into the magnetized state inside the solenoid
looks promising for high-energy electron cooling projects
(γ = 100−1000) where a natural flat shape of an electron
beam in a storage ring can be utilized. However, it does
not look so for the medium energy electron cooling where
it would require a thread-like cathode with too high of
an aspect ratio (σy/σx = ρ2

L/a
2).

VI. FERMILAB ELECTRON COOLING
PROJECT

To increase Tevatron luminosity, Fermilab is develop-
ing a high energy electron cooling system to cool 8.9
GeV/c antiprotons in the Recycler ring [6]. A scheme
of the electron transport proposed for this project incor-
porates many of the above ideas. This scheme is pre-
sented here as an example of how these ideas can be
implemented.

The electron transport line employs an electrostatic
accelerator Pelletron with the gun immersed into a lon-
gitudinal magnetic field. For the cathode radius of 2.5
mm, the field of 600 G on its surface was chosen to pro-
vide the magnetic flux sufficient to suppress the space
charge drift motion inside the cooler (5). The magnetic
field extends up to an end of the first acceleration section
where it is already reduced to 200 G while the electrons
have 0.43 MeV of the kinetic energy (see Eq.(7) and es-
timations after it).

When the electron beam exits this field region, it con-
tinues to be accelerated in the Pelletron, having 2 focus-
ing kicks by thin solenoid lenses during the acceleration.
After that, the beam is to be delivered to the cooling sec-
tion. This part of the transport line includes two 90 de-
gree bending blocks with solenoid lenses before and after
every of them. To deliver the beam from the accelerator

to the cooling section, it must be turned in two different
planes: first in the vertical and then in the horizontal.
Each of the two mirror-symmetric blocks consists of two
45 degree bending magnets with a symmetric quadrupole
triplet between them and two quadrupoles after (before)
the resulting 90 degree bend. This construction allows to
reach several goals.

• First, it allows to have zero dispersion downstream
the block which is important both for the cooling
conditions and for the electron beam stability. To
eliminate dispersion, a 90-degree bend has to be
separated into two halves with a focusing element
inserted in between. In principle, this central focus-
ing element could be either a solenoid, or a single
quadrupole, or a symmetric triplet. The triplet is
chosen because the required solenoid would be too
heavy, while the single quadrupole would give too
wide beam inside of the downstream dipole.

• Second, this bending scheme provides an invariant
mapping for the whole bending block (the mapping
is block-invariant). Beam parameters at the exit
of the Pelletron cannot be current-independent.
Thus, tunable optical elements are necessary in the
beam line for beam matching (4). When the beam
line consists of invariant blocks, these tunable ele-
ments can be solenoids only.

• Finally, the beam must be small enough inside the
dipoles and other elements to suppress nonlinear
aberrations.

The two solenoids between the bending blocks allows
to have reasonable beam envelope for the second bending
block and the matched beam radius at the entrance of
the cooling section. The last solenoid upstream of the
cooling section provides the zero radial divergence inside
the cooler.

The electron transport simulations were done with the
program OptiM [27] which is an interactive Windows ap-
plication allowing a visual optics design. The beam en-
velopes from the exit of the gun solenoid to the beginning
of the cooling section are presented in Fig. 3.
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FIG. 4. Designed layout of the electron cooling beam line
at Fermilab.

Parameter Value Units

Electron Kinetic Energy 4.3 MeV

Electron Beam Current 0.5 A

Cathode Radius 2.5 mm

Gun Solenoid Field 600 G

Cooling Length 20 m

Cooling Solenoid Field 100 G

Beam Radius 6.1 mm

Electron Beam Angles < 100 µ rad

TABLE I. Electron Cooling System Parameters

VII. SUMMARY

The main purpose of this paper was to show how
an electron beam for relativistic electron cooling can
be transported by means of isolated focusing elements
and bends, without any excitation of the cyclotron mo-
tion in the cooling solenoid. Introduced concepts of the
angular momentum dominated beam and the effective
beta-function showed the region of parameters where the
lumped focusing can be used. For the beam lines con-
sisted of the optically symmetric elements (local invariant
lines), the two Courant-Snyder invariants were found and
conditions for the beam matching between the cathode
and the electron cooler were discussed.

For general kind of the beam lines, it was demonstrated
that the beam matching can be formulated as uncoupling
of the drift and the cyclotron canonic degrees of freedom
under the beam transportation. For rotationally invari-
ant mappings, it again leads to the same matching con-
dition and temperature transformation as for the locally
invariant case. Concept of a block-invariant line was in-
troduced, general form of the invariant matrices was dis-
cussed, utility for the whole line that consists of invariant
blocks was pointed. It was shown that any transforma-
tion can be transmuted to an invariant one by means of
three free quadrupoles.

Generalized Busch’s theorem was extended to the
whole class of linear Hamiltonian systems. It was pointed
out that according to this theorem, the identical match-
ing condition is valid when any hydrodynamic round
beam is transformed into round beam again. Possibil-
ities were discussed to use initially flat beams converted
into round in the cooler. A general condition on the ini-
tial beam state was formulated for having a magnetized
beam in the cooler. As an example of application of the
developed ideas, the electron transport scheme for the
Fermilab cooling project was presented.

The described methods of matching between the
solenoid of the cooling region and a rest of the electron
beam track (with a round or flat beam) can also serve as
guiding principles for a design of recirculators and stor-
age rings for high energy electron cooling.
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